ANNUAL EVALUATION REPORT 2023

EAA

Dr. Arquímedes Ruiz-Columbié

Active Influence & Scientific Management

Cloud seeding operations in 2023 began over the EAA target area in May. This annual report serves as a summary of the results. A total of **16 clouds** were seeded and identified by TITAN in **8 operational days**. Table 1 on page 1 summarizes the general figures:

Table 1: Generalities

First operational day: May 15th, 2023 Last operational day: September 26th, 2023

Number of operational days: 8 (One in May, two in June, two in July, one in August, and two in September)

According to the daily reports, operational days were qualified as:

Five with excellent performance Two with very good performance One with good performance

Number of seeded and identified clouds: 16 (10 small-seeded clouds, 2 large-seeded clouds, 4 type B-seeded clouds)

Missed Opportunities: one (with a lifetime longer than 1 hour) $\sim 6\%$ of resources

Storm # 6 on September 10th over Bandera, Medina, and Uvalde Counties (22:16-23:20 Z)

Small Clouds

Evaluations were done using TITAN and NEXRAD data.

Table 2 shows the results from the classic TITAN evaluation for the 10 smallseeded clouds which obtained proper control clouds.

Table 2: Seeded Sample versus Control Sample (10 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	55 min	40 min	1.38	38 (25)
Area	65.3 km ²	45.2 km ²	1.44	44 (20)
Volume	242.6 km ³	129.5 km ³	1.87	87 (41)
Top Height	9.1 km	8.2 km	1.11	11 (3)
Max dBz	53.3	51.2	1.04	4 (1)
Top Height of max dBz	3.7 km	3.9 km	0.95	-5 (- 3)
Volume Above 6 kn	$1 76.7 \text{ km}^3$	23.8 km ³	3.22	222 (59)
Prec.Flux	568.3 m ³ /s	$315.5 \text{ m}^3/\text{s}$	1.80	80 (35)
Prec.Mass	1897.1 kton	859.2 kton	2.21	121 (85)
CloudMass	235.6 kton	110.7 kton	2.13	113 (50)
η	8.1	7.8	1.04	4 (25)

Bold values in parentheses are modeled values, whereas η is defined as the quotient of Precipitation Mass divided by Cloud Mass and is interpreted as efficiency. A total of 72 AgI-BIP were used in this sub-sample with good timing (78 %) for an average effective silver iodide dose of about 50 ice-nuclei per liter. The seeding operations lasted on average about 8 minutes. A very good increase of 85 % in precipitation mass, together with a 50 % increase in cloud mass illustrates that the seeded clouds grew at expense of the environmental moisture (they are open systems) and used only a fraction of this moisture for their own maintenance. The increases in lifetime (25 %), area (20 %), volume (41 %), volume above 6 km (59%), and precipitation flux (35 %) are noticeable. There were small increases in maximum reflectivity (1 %) and in top height (3 %). The seeded sub-sample seemed 25 % more efficient than the control sub-sample. Results are evaluated as **very good for this sample**.

An increase of **85 %** in precipitation mass for a control value of 859.2 kilotons in 10 cases means:

 $\Delta_1 = 10 \text{ x } 0.85 \text{ x } 859.2 \text{ ktons} \approx 7 \text{ 303 ktons} \approx 5 \text{ 923 ac-f} \text{ (layer: 11.2 mm} \approx 0.44 \text{ in)}$

Large Clouds

The sub-sample of 2 large-seeded clouds received a synergetic analysis. On average, the seeding operations on these large clouds affected 50 % of their whole volume with perfect timing (100 % of the material went to the clouds in their first half-lifetime). A total of 12 AgI-BIP flares were used in this sub-sample for an effective glaciogenic dose of about **20 ice nuclei per liter**.

Also, on average, large clouds were 30 minutes old when the operations took place; the operation lasted about 10 minutes, and the large-seeded clouds lived 225 minutes.

Table 3 shows the corresponding results:

Table 3: Large Seeded Sample versus Virtual Control Sample (2 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	225 min	205 min	1.10	10
Area	1081 km ²	991 km ²	1.09	9
Prec.Mass	126 277 kton	97 267 kton	1.30	30

An increase of 30 % in precipitation mass for a control value of 97 267 kton in 2 cases may mean:

 $\Delta_2 = 2 \times 0.30 \times 97\ 267\ \text{ktons} \approx 58\ 360\ \text{ktons} \approx 47\ 330\ \text{ac-f}$ (Layer: 27.0 mm $\approx 1.1\ \text{in}$)

Type B Clouds

Four type B clouds were initially seeded over EAA target area during the season. On average, the seeding operations on these type B clouds affected 18 % of their whole volume with excellent timing (95 % of the material went to the clouds in their first half-lifetime). A total of 44 AgI-BIP flares were used in this sub-sample for an effective dose of about **45 ice nuclei per liter**.

Also, on average, these type B clouds were 100 minutes old when the operations took place; the operation lasted about 15 minutes, and the B-seeded clouds lived 275 minutes.

Table 4: Type B Seeded Sample versus Virtual Control Sample (4 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	275 min	260 min	1.06	5
Area	239 km ²	230 km ²	1.04	4
Prec.Mass	40 977 kton	37 588 kton	1.09	9

 $\Delta_3 = 4 \ge 0.09 \ge 37588 \text{ ktons} \approx 13522 \text{ kton} \approx 10974 \text{ ac-f}$

(Layer: 14.2 mm ≈ 0.56 in)

The total increase: $\Delta = \Delta_1 + \Delta_2 + \Delta_3 = 64$ 227 ac-f (592 ac-f/small, 23 665 ac-f/large, 2 744 ac-f/B)

Micro-regionalization

Increases in precipitation mass were analyzed county by county in an attempt to better describe the performance and corresponding results. **Table 5** below offers the details:

County Seeding	Initial Seeding	Extended (increase)	Acre-feet (increase)	et Inches Rain gage % e) (increase) (season value*) (increase)		
Uvalde	5	6	14 600	0.17	11.46 in	1.5
Bandera	3	3	16 100	0.44	14.99 in	2.9
Medina	9	11	14 100	0.19	14.73 in	1.3
Bexar		1	1 600	0.02	13.79 in	0.1
Subtotal			46 400			
Outside (downwind	d effects)	~ 17 900			
Total			64 300			
Average				0.21 in	13.74 in	1.5 %

(**Initial seeding** means the number of clouds seeded when the operations began; whereas **extended seeding** means the counties favored by seeding after the initial operations took place.

* Seasonal precipitation values: April-September 2023

Final Comments

- Results are evaluated as very good. average timing: 78 %, average dose: 45 icn/L; missed opp.: 1
- The micro-regionalization analysis showed increases per county; different zones received downwind benefits; the average increase in precipitation, referred to as rain gauge seasonal value, is about 2 %
- Radar estimations of precipitation should be considered as measurements of trend. Nevertheless, seeding operations improved the dynamics of the seeded storms.
- In 2023, the total increase in the region, estimated in 0.046 million acre-feet, should be considered a great help to the freshwater natural resources.

Note: In 2023, well-done operations struggled with very limited seedable resources.